

Tetrahedron L&rem. Vol. 35. No. 4. pp. 543-546, 1994 Elsevier Science LM Printed in Great Britain *00404039194 \$6.00+0.00*

0040-4039(93)EO270-T

A Comparison of Ligands Proposed for the Asymmetric Dihydroxylation

Gerard A. Crispino, Atsushi Makita, Zhi-Min Wang and K. Barry Sharpless*

Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA

Abstract: Comparative data for several ligands proposed recently for use in the osmium-catalyzed asymmetric dihydroxylation (AD) are presented.

1,4-Bis(dihydroquinidyl)phthalazine **la,** and its dihydroquinine analog, have greatly increased the scope of the osmium-catalyzed asymmetric dihydroxylation (AD), giving high enantioselectivities for five out of the six classes of olefms. 1 During the time that has elapsed **since the** earliest communication of these results, $\frac{2}{3}$ reports from two laboratories have appeared proposing the use of other ligands³ in the AD, namely, 1,4-dihydroquinidylpyridazine 2a,⁴ and dihydroquinidylterephthalate 3a.⁵ The purpose of this letter is to compare the enantioselectivities displayed by the latter with those obtained with the phthalazine class in the AD.

Tables 1 and 2 compare the enantioselectivities obtained for several substrates of interest using the dihydroquinidine (Table 1) and dihydroquinine (Table 2) versions of the ligands in question. The terephthalate ligand **3a** and its dihydroquinine analog gave substantially lower enantioselectivities in every case (Table 1). In fact, the terephthalate ligands give enantioselectivities comparable to the dihydroquinidyl and dihydroquinyl-para-chlorobenzoate ligands (4a and 4b) which were the first ligands introduced for the catalytic AD.6

Dihydroquinylpyridazine 2b also gives results inferior to dihydroquinylphthalazine **lb** (Table 2). This is especially evident in the trans-disubstituted **and trisubstituted** olefm classes. As shown in Table 1, dihydroquinidylpyridazine 2a gives results virtually identical within experimental error $(\pm 1\%)$ to the phthalazine **la** for the substrates **shown** in Table 1.7

Table 1: Enantioselectivities obtained using *dihydroquinidyl* substituted ligands^a

a) The AD's were run as described in ref. 2. The ee's were measured using HPLC and GLC analysis of the diols or MTPA esters as described in refs. 2 and 8. The configuration of the resulting diols are all R (or $R.R$ for decane-5,6-diol). b) The product is 2methyl-7-octene-2,3-diol, see ref. 8. c) Corey⁴ reports 71% ee. d) Lohray⁵ reports 92% ee for styrene and 45% ee for 1-decene. The enantiomeric excesses were determined by comparison of measured optical rotation values with reported literature values, by 1 H NMR analysis of the corresponding bis-MTPA esters, or by 1 H NMR (200 MHz) using corresponding bis-acetate derivatives.

Table 2: Enantioselectivities obtained using *dihydroquinyl* substituted ligands^a

a) The AD's were run as described in ref. 2. The ee's were obtained using HPLC and GLC analysis of the diols or MTPA esters as described in refs. 2 and 8. The configuration of the resulting diols are all S (or S,S for decane-5,6-diol). b) The product is 2methyl-7-octene-2,3-diol, see ref. 8. c) Lohray⁵ reported 85% ee using the methods described in the legend for Table 1.

Finally, Lohray has proposed the use of the terephthalate 3a for the kinetic resolution of allylic acetates.⁹ His report that the terephthalate 3a gives better resolution of 1-acetoxy-1-cyclohexyl-3-phenyl-2**propene than does the phthalazine la was confirmed by us, however, we observed (Table 3) a lower relative** rate than he reported $(7.4$ compared to 10.7^{10} . Of more significance is the observation that dihydroquinidyl*p~a-chlorobenzoate* **4a gives slightly better kinetic resolution than the terephthalate 3a.l2**

a) The kinetic resolutions were performed as described by Lohray in ref. 9. b) The ee of the recovered allylic acetate was *cietemrlnrrf with* **a Chiralcel OF HPLC column using an eluent of 1.0% iROH in hexsne and a 0.75 wmin flow rate. The** configuration is S, see ref. 9. c) Lohray reports 88% ee as determined by ¹H NMR using Eu(hfc)₃ as a chiral shift reagent.

ln conclusion, we have demonstrated that the phthalazine ligand class is superior to the other ligand classes reported recently for use in the AD. Since it is virtually certain that new ligands will be found which will eclipse even the present best ones ,¹³ the search for new ligands should continue.

Acknowledgments

We thank Dr. Marcos Soler for preparing $(DHQD)_2$ -TP 3a. This work was supported by a grant from The **National institutes of Health (GM-28384).**

References **and Notes**

- **1. Morikawa, K., Park, J., Andersson, P. G., Hashiyama, T., Sharpless, K. B., J. Am. Chew. Sot. 1993, 115,8463 and references cited therein.**
- **2. Sharpless, K. B., Amberg, W., Bennani, Y. L., Crispino, G. A., Hartung, J., Jeong, K.-S., Kwong, H_-** L., Morikawa, K., Wang, Z.-M., Xu, D., Zhang, X. L. *J. Org. Chem.*, 1992, 57, 2768.
- **3.** Both of the ligands in question (2a and 3a) were prepared and tested by the Sharpless group at MIT, as **part of the general ligand screening process. They were subsequently rejected due to the observed superiority of the phthalazine class of ligands in virtually all applications of the AD process: Hartung, J., Jeong, K.-S., Sharpless, K. B. unpublished results. (Pyridazine ligands 2a and 2b are included in MITs U.S. Pat. App1. No. 0771775,633, Oct. 10, 1991.)**
- 4. Corey, E. J., Noe, M. C., Sarshar, S. *J. Am. Chem. Sot.,* 1993,115,3828.
- 5. Lohray, B. B., Bhushan, V. Tetrahedron Lett. 1992, 33, 5113.
- 6. Jacobsen, E. N., Markó, I., Mungall, W. S., Schröder, G., Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968.
- 7, Since the enantioselectivities obtained with dihydroquinidylpyridazine **2a** and the phtbaiazine **la are very** close for most substrates, cost considerations may make this pyridazine attractive for B-face selective AD on a large scale.
- 8. Crispino, G. A., Sharpless, K. B. Synlett 1993, 47.
- 9. Lohray, B. B., Bhushan, V. *Tetrahedron Lett.* 1993,34,3911.
- 10. The relative rate can be calculated by application of the following equation:

 $k_{rel} = ln(1-C)(1-ee)/ln(1-C)(1+ee)$

where C is the percent conversion/100 and ee is the enantiomeric excess of the recovered olefin/100, respectively. A relative rate of 10.7 can be calculated with $C = 0.60$ and ee = 0.88 as reported in ref. 9.

- 11. This equation is an adaptation of one presented by Kagan where the variables have heen changed to those most applicable to synthetic problems. BaIavoine, G.; Moradpour, A.; Kagan. H, B. *J. Am. Chem. Soc.* **1974**, 96, 5152.
- 12. It is not clear at present why (DHQD)2-PHAL **la** gives kinetic resolution inferior to either (DHQD)z-TP **3a or** DHQD-CLB **4a. This** unexpected result is currently under investigation. For examples of kinetic resolution with the phthalazine class of ligands see: VanNieuwenhze, M. S., **Sharpless,** K. B. *J. Am.* **Gem. SOC. 1993,115,7864.**
- 13. A recent report from these laboratories describes a new class of diphenylpyrimidine ligands which give higher enantioselectivies than phthalazine 1 for terminal olefins, especially those with branching in the **substitutent: Crispino, G.** A., Jeong, K.-S., Kolb, H. C., Wang, Z-M., Xu. D., Sharpless, K. B. J. Org. Chem. 1993, 58, 3785.

(Received in USA 15 September 1993; revised 4 November 1993; accepted 17 November 1993)